国内外研究现状和发展动态
氨基酸是含氨基和羧基的一类有机化合物的统称,是构成蛋白质大分子的基础结构,几乎一切生命活动都与之相关。氨基酸是生命代谢的物质基础,是生物体内不可缺少的营养成分,对生物大分子的活性及其生理功能起着极为重要的作用。例如: 赖氨酸能促进大脑发育,还能调节乳腺、黄体及卵巢,防止细胞退化; 甲硫氨酸有参与组成血红蛋白、组织与血清,促进脾脏、胰脏及淋巴的功能; 如果人体缺乏任何一种必需氨基酸,就可能导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病[1]。此外,氨基酸在生命体内主要是以L-氨基酸存在,也含有部分的D-氨基酸,他们在生理学和病理学上的作用是不同的,那么对显示不同手性氨基酸分子的识别就至关重要了[2],且氨基酸分子的检测分析在医药、食品、饲料、化工等行业中都有重要应用[3]。因此,对氨基酸分子的分析方法的研究受到了世界各国的重视,对生物化学及整个生命科学研究具有重要意义,对于提高人类的生存生活质量、人体健康和经济发展具有十分重要的意义。
检测氨基酸分子的方法有很多,如高效离子交换色谱法[4]、气相色谱法( GC) 和气相色谱/质谱联用法( GC /MS) [5-8] 、高效液相色谱法[9-16]、液相色谱质谱联用( LC /MS) 法[17-19],毛细管电泳( Capillary electrophoresis,CE) [20-27] 、高效阴离子交换色谱-积分脉冲安培法( HPAEC-IPAD) [28-29],和电化学分析法 [15,16,17]等。然而,他们往往需要昂贵的精密仪器、复杂的样品制备流程和熟练地操作人员,不能或不方便在实地实时使用。因此,现场环境检测方法、移动实验室和便携式检测仪器等概念近年来被许多研究人员提出[18,19]。其中,离子选择性电极因其具有制作简单、测试快速、成本低和检测范围宽等特点[20,21],对测定无机离子和含氮有机小分子有很好的应用前景。
膜电位拆分电极(Potentiometric Enantioselective MembraneElectrodes (EPMEs))是八九十年代新兴的一种电化学分析新技术,在结构和性能上具有类似一般离子选择性电极的特性。拆分绑定原理是EPME这种手性选择器发展背后的原理,它是在一定条件下,分子之间通过非共价相互作用而自发组合形成的一种稳定、结构明确、具有特定的某种功能的超分子结构或分子聚集体 [30]。能够人为构建出比较理想的修饰界面,为界面现象的研究提供了一种分子水平上能精确控制界面性质的方法[31]。由于它对某些分子或离子具有高选择性的识别功能,稳定性也比较高。所以,这种方法对于研究含氮有机小分子有深远的意义。Aboul-Enein等[30-33 ]用环糊精、麦芽糖糊精、喹啉、奎尼丁及其衍生物修饰碳糊电极的EPMEs电化学生物传感器,用于药物分析。Ozoemena等[34]利用环糊精及其衍生物修饰碳糊电极对L-脯氨酸的检测,其检测下限为0.1nmol/L;Raluca-Ioana等[35]利用富勒烯及其衍生物修饰碳糊电极,来对L-组氨酸的手性识别,其检测限为2.2pmol/L。
据此,本文通过离子选择性电位分析方法,利用新型功能超分子化合物的主客体识别与EPMEs新技术设计血清中氨基酸的快速传感检测敏感器件,建立含氮小分子监测信息的无线传输与接收新方法,实现对氨基酸的自动检测与无线探测。可望发展食品中氨基酸含量的超灵敏现场监测和安全评估,实现保障人民群众的生活质量,提高我国分析检测装置在国内外市场的竞争力,不仅在生物生长和食品的监督方面以及生物化学的研究具有重要的基础理论意义和实际应用价值,而且对生命科学的研究具有十分重要的现实意义。
参考文献:
[1] 暴海霞, 戴新华. 氨基酸检测方法的进展和现状[J]. 化学试剂, 2013, 35(7).
[2] Aboul-Enein, Hassan Y., and I. W. Wainer. The impact of stereochemistry on drug development and use. John Wiley & Sons, 1997.
[3] 车兰兰,李卫华,林勤保;氨基酸分析检测方法的研究进展[J]. 氨基酸和生物资源, 2011, 33(2):39-42.
[4] Mooee S, Spaceman D H, Stein W H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system.[J]. Analytical Chemistry, 1958, 30(7):1185-1190.
[5] Khuhawar M Y, Majidano S A. GC Analysis of Amino Acids Using Trifluoroacetylacetone and Ethyl Chloroformate as Derivatizing Reagents in Skin Samples of Psoriatic and Arsenicosis Patients[J]. Chromatographia, 2011, 73(7):701-708.
[6] Herbert, P., Barros, P., Ratola, N., & Alves, A. (2000). Hplc determination of amino acids in musts and port wine using opa/fmoc derivatives. Journal of Food Science, 65(7), 1130-1133.
[7] Duncan M W, Poljak A. Amino Acid analysis of peptides and proteins on the femtomole scale by gas chromatography/mass spectrometry.[J]. Analytical Chemistry, 1998, 70(5):890-896.
[8] Kawana, S., Nakagawa, K., Hasegawa, Y., & Yamaguchi, S. (2010). Simple and rapid analytical method for detection of amino acids in blood using blood spot on filter paper, fast-gc/ms and isotope dilution technique. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 878(30), 3113.
[9] Pereira, V., Pontes, M., Câmara, J. S., & Marques, J. C. (2008). Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. Journal of Chromatography A, 1189(1–2), 435-443.
[10] Fernández-Fı́Gares I, Rodrı́Guez L C, González-Casado A. Effect of different matrices on physiological amino acids analysis by liquid chromatography: evaluation and correction of the matrix effect[J]. Journal of Chromatography B, 2004, 799(1):73-79.
[11] López-Cervantes J, Sánchez-Machado D I, Rosas-Rodríguez J A. Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography.[J]. Journal of Chromatography A, 2006, 1105(1–2):106-110.
[12] Naval, M. V., Gómezserranillos, M. P., Carretero, M. E., & De, A. C. (2006). Value of high-performance liquid chromatographic analysis of amino acids in the determination of panax ginseng radix extract effect in cultured neurons. Journal of Chromatography A, 1121(2), 242-7.
[13] Bosch L, Alegría A, Farré R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods.[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2006, 831(1-2):176-183.
[14] Shi, T., Tang, T., Qian, K., Wang, F., Li, J., & Cao, Y. (2009). High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Analytica Chimica Acta, 654(2), 154-161.
[15] Davey J F, Ersser R S. Davey JF, Ersser RS: Amino acid analysis of physiological fluids by high-performance liquid chromatography with phenylisothiocyanate derivatization and comparison with ion-exchange chromatography[J]. Journal of Chromatography A, 1990, 528(1):9-23.
[16] Yan, D., Li, G., Xiao, X. H., Dong, X. P., & Li, Z. L. (2007). Direct determination of fourteen underivatized amino acids from whitmania pigra by using liquid chromatography-evaporative light scattering detection. Journal of Chromatography A, 1138(1), 301-304.
[17] Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens J, Morla A, Bouchu D. ESI-MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode[J]. Rapid Communications in Mass Spectrometry, 2003, 17(12):1297-311.
[18] Woolfitt, A. R., Solano, M. I., Williams, T. L., Pirkle, J. L., & Barr, J. R. (2009). Amino acid analysis of peptides using isobaric-tagged isotope dilution lc-ms/ms. Analytical Chemistry, 81(10), 3979.
[19] 黄翼飞,胡静;液相色谱-电喷雾离子阱串联质谱同时分析烟草中的20种游离氨基酸[J]. 色谱, 2010, 28(6):615-622.
[20] Yu M, Dovichi N J. Attomole amino acid determination by capillary zone electrophoresis with thermooptical absorbance detection.[J]. Analytical Chemistry, 1989, 61(1):37-40.
[21] Coufal, P., Zuska, J., Van, d. G. T., Smith, V., & Gas, B. (2003). Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis, 24(4), 671.
[22] Chen S, Xu Y, Xu F, Feng X, Du W, Luo Q, Liu B. Separation and determination of amino acids by micellar electrokinetic chromatography coupling with novel multiphoton excited fluorescence detection[J]. Journal of Chromatography A, 2007, 1162(2):149-153.
[23] She, Z., Sun, Z., Wu, L., Wu, K., Sun, S., & Huang, Z. (2002). Rapid method for the determination of amino acids in serum by capillary electrophoresis. Journal of Chromatography A, 979(1–2), 227-232.
[24] Chan, K. C., Janini, G. M., Muschik, G. M., & Issaq, H. J. (1993). Laser-induced fluorescence detection of 9-fluorenylmethyl chloroformate derivatized amino acids in capillary electrophoresis. Journal of Chromatography A, 653(1), 93-7.
[25] Thongkhao-On, K., Kottegoda, S., Pulido, J. S., & Shippy, S. A. (2004). Determination of amino acids in rat vitreous perfusates by capillary electrophoresis. Electrophoresis, 25(17), 2978-84.
[26] 陈冰,李小戈,何萍等; 高效毛细管电泳-间接紫外吸收检测法测定食品中的氨基酸[J]. 色谱,2004, 22(1):74-76.
[27] Zinellu A, Sotgia S, Pisanu E, Scanu B, Sanna M, Franca Usai M, Chessa R, Deiana L, Carru C. Quantification of neurotransmitter amino acids by capillary electrophoresis laser-induced fluorescence detection in biological fluids.[J]. Analytical and Bioanalytical Chemistry, 2010, 398(5):1973-8.
[28] Martens D A, Loeffelmann K L. Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry.[J]. Journal of Agricultural & Food Chemistry, 2003, 51(22):6521-6529.
[29]Yu H, Ding Y S, Mou S F. Some factors affecting separation and detection of amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.[J]. Journal of Chromatography A, 2003, 997(1-2):145-153.
[30] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan. Enantioselective Sensors and Biosensors in the Analysis of Chiral Drugs[J]. Critical Reviews in Analytical Chemistry, 1998, 28(3):259-266.
[31] Stefana R I, van Staden J L, Aboulenein H Y. Design and use of electrochemical sensors in enantioselective high throughput screening of drugs. A minireview.[J]. Combinatorial Chemistry & High Throughput Screening, 2000, 3(6):445-54.
[32] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan. Enantioselective Sensors and Biosensors in the Analysis of Chiral Drugs[J]. Critical Reviews in Analytical Chemistry, 1998, 28(3):259-266.
[33] Hassan Y. Aboul-Enein, Raluca-Ioana Stefan, Jacobus F. van Staden. Analysis of Several Angiotensin-Converting Enzyme Inhibitors using Potentiometric, Enantioselective Membrane Electrodes[J]. Analytical Letters, 1999, 32(4):623-632.
[34] Ozoemena KI, Stefan RI. Enantioselective potentiometric membrane electrodes based on alpha-, beta- and gamma-cyclodextrins as chiral selectors for the assay of L-proline.[J]. Talanta, 2005, 66(2):501-4.
[35] Stefan-van Staden R I, Lal B, Holo L. Enantioselective potentiometric membrane electrodes based on C(60) fullerene and its derivatives for the assay of l-Histidine.[J]. Talanta, 2007, 71(3):1434-7.
|