一、个人照片
二、基本信息
陈辉,男,1990年9月生,湖南衡阳人,工学博士,院聘副教授。2019年7月至今,在欧博官网任教,主讲《理论力学》、《材料力学》本科生课程。在《Acta Materialia》、《力学学报》等国内外学术期刊上发表论文30余篇。主持和参与多项纵向科研项目。主要从事材料力学性能表征与测试方法等方面研究,欢迎积极上进,具有力学、数学或材料专业背景的同学报考(联系方式:chen_hui5352@163.com)。
三、教育背景
2012.09-2019.06 西南交通大学力学与工程学院,固体力学,博士
2008.09-2012.06 西南交通大学力学与工程学院,工程力学,学士
四、目前研究领域或主要研究方向
1. 材料力学性能表征与测试方法;
2. 典型测试构元线弹性/超弹性/弹塑性变形行为;
3. 服役结构完整性评价;
五、已完成或已在承担主要课题
1. 湖南省教育厅优秀青年项目,钢结构焊接残余应力的微压痕数值模拟与测试方法,2020/09- 2023/8,在研,主持;
2. 欧博官网开放基金项目,基于微米压入的桥梁钢结构材料残余应力评估方法,2020/01-2021/12,在研,主持;
3. 欧博官网“双一流”建设项目,桥梁钢焊接接头力学性能的一体化压入预测研究,2021/01-2022/12,在研,主持。
4. 国家自然科学基金面上项目,延性材料与裂纹构元的断裂理论及毫微测试方法研究,2019/01-2022/12,在研,参与;
5. 国家自然科学基金面上项目,基于延性材料RVE破断行为的结构完整性评价基础问题研究,2015/01-2018/12,已结题,参与;
6. 国家自然科学基金面上项目,固体材料和构件断裂韧性的获取方法,2011/01-2014/12,已结题,参与;
六、已发表的学术论文
[1] Chen H, Cai L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J]. Acta Materialia, 2016, 121: 181-189. (SCI)
[2] Chen H, Cai L X. Unified elastoplastic model based on a strain energy equivalence principle[J]. Applied Mathematical Modelling, 2017, 52: 664-671. (SCI)
[3] Chen H, Cai L X. An elastoplastic energy model for predicting the deformation behaviors of various structural components[J]. Applied Mathematical Modelling, 2019, 68:405-421. (SCI)
[4] Chen H, Cai L X, Bao C. Equivalent-energy indentation method to predict the tensile properties of light alloys[J]. Materials & Design, 2019, 162:322-330. (SCI)
[5] Peng Y., Cai L X, Chen H*, et al. A new method based on energy principle to predict uniaxial stress-strain relations of ductile materials by small punch testing[J]. International Journal of Mechanical Sciences, 2018, 138: 244-249. (SCI)
[6] Peng Y, Cai L X, Chen H*, et al. A novel semi-analytical method based on equivalent energy principle to obtain J resistance curves of ductile materials[J]. International Journal of Mechanical Sciences, 2018, 148: 31-38. (SCI)
[7] Chen H, Cai L X. Theoretical conversions of different hardness and tensile strength for ductile materials based on stress–strain curves[J]. Metallurgical and Materials Transactions A, 2018, 49(4): 1090-1101. (SCI)
[8] Chen H, Cai L X. Unified ring-compression model for determining tensile properties of tubular materials [J]. Materials Today Communications, 2017, 13: 210-220. (SCI)
[9] Chen H, Cai L. A universal elastic-plastic model correlating load-displacement relation and constitutive parameters for typical testing components[J]. Results in Physics, 2019: 102230. (SCI)
[10] Chen H, Cai L X, Bao C. A novel model for determining tensile properties and hardness of steels by spherical indentations[J]. Strain, 2020: 12365. (SCI)
[11] Chen H, Cai L X, Li C X. An elastic-plastic indentation model for different geometric indenters and its applications[J]. Materials Today Communications, 2020:101440. (SCI)
[12] Peng Y, Cai L, Yao D, Chen H*, et al. A novel method to predict the stress-strain curves and J resistance curves of ductile materials by small samples[J]. International Journal of Pressure Vessels and Piping, 2019:172:48-55. (SCI)
[13] Peng Y, Cai L X, Chen H*, et al.A theoretical model for predicting uniaxial stress-strain relations of ductile materials by small disk experiments based on equivalent energy method[J]. Transactions of the Indian Institute of Metals, 2019, 72(1): 133-141. (SCI)
[14] Peng Y, Cai L X, Chen H*, et al. Application of a semi-analytical method that accounts for constraint effects in the determination of resistance curves of mode I cracked specimens[J]. Theoretical and Applied Fracture Mechanics, 2020,107: 102560. (SCI)
[15] Liu Q, Cai L, Chen H*, et al. A novel test method based on small specimens for obtaining low-cycle-fatigue properties of materials[J]. Mechanics of Materials, 2019, 138: 103153. (SCI)
[16] Liu X K, Cai L X, Chen H, et al. Semi-analytical model for flat indentation of metal materials and its applications [J]. Chinese Journal of Aeronautics, 2020, 33(12):3266-3277. (SCI)
[17] Qi S, Cai L X, Bao C, Chen H, et al. Analytical theory for fatigue crack propagation rates of mixed-mode I–II cracks and its application[J]. International Journal of Fatigue, 2019, 119: 150-159. (SCI)
[18] 陈辉, 蔡力勋, 包陈.双锥度压入的FAT迭代法获取材料的力学性能[J].核动力工程, 2015, 36(5): 101-104. (EI)
[19] 张志杰, 蔡力勋, 陈辉*, 包陈, 刘晓坤.金属材料的强度与应力-应变关系的球压入测试方法[J].力学学报, 2019,51(01):159-169. (EI)
[20] 张希润,蔡力勋,陈辉.基于能量密度等效的超弹性压入模型与双压试验方法[J].力学学报,2020,52(03):787-796. (EI)
[21] 贺屹, 蔡力勋, 陈辉*, 彭云强. 求解I型裂纹构元J积分的半解析方法[J].力学学报, 2018, 50(3): 579-588. (EI)
[22] 贺屹,蔡力勋,陈辉. 基于能量等效原理的K因子、柔度统一模型[J].机械工程学报, 2018,54(14):98-106. (EI)
[23] 尹涛, 蔡力勋, 陈辉, 姚迪. 基于毫小薄片试样获取材料应变疲劳性能的测试方法[J].机械工程学报, 2018, 54(10): 68-77. (EI)
[24] 尹涛,蔡力勋,陈辉, 姚迪. TA17合金薄片材料毫小试样疲劳性能研究.工程力学, 2018,35(11):206-215. (EI)
[25] 刘勤,蔡力勋,陈辉.用于薄片试样弹塑性应力-应变分析的半解析方法[J].航空学报,2018,39(11):90-101. (EI)
[26] 张志杰,郑鹏飞,陈辉,蔡力勋.基于能量等效原理的金属材料硬度预测方法[J].工程力学,2021,38(03):17-26. (EI)
[27] 于思淼, 蔡力勋, 姚迪, 包陈, 陈辉,等. 准静态条件下金属材料的临界断裂准则研究.力学学报,2018, 50(5): 1063-1080. (EI)
[28] 尹涛,蔡力勋,陈辉,包陈.利用小尺寸缺口试样测定延性材料的单轴本构关系[J].航空材料学报,2016,36(01):81-86. (CSCD)
[29] 陈辉,蔡力勋,包陈.基于小圆环试样获取金属材料单轴本构关系的FAT方法[J].应用数学和力学,2014,35(S1):136-140. (CSCD)
[30] 陈辉,蔡力勋,姚迪,包陈.基于小尺寸材料试验与有限元分析的耦合方法获取材料力学性能[J].机械强度,2014,36(02):187-192. (CSCD)
七、授权专利
[1] 陈辉 蔡力勋, 包陈,尹涛. 圆环径向压缩能量预测材料单轴本构关系测定方法: 中国, 201510309391.X [P].2017-12-19. (发明专利)
[2] 蔡力勋,陈辉,包陈,刘晓坤. 圆球形压入预测材料单轴应力-应变关系测定方法: 中国, 201610023696.9 [P].2018-07-31. (发明专利)
[3] 蔡力勋,陈辉,彭云强. 双锥形压入预测材料单轴本构关系测定方法: 中国, 201610024076.7 [P].2018-05-22. (发明专利)
[4] 蔡力勋,陈辉. 圆柱形平头压入预测材料单轴本构关系的测定方法: 中国, 201610023839.6 [P].2018-07-31. (发明专利)
[5] 蔡力勋,陈辉. 一种基于圆锥形压头的已知材料残余应力测定方法, 201810706088.7 [P]. 2020-09-08. (发明专利)
[6] 彭云强,蔡力勋,陈辉,包陈,圆盘试样压缩获取材料单轴应力-应变关系的方法: 中国, 201610169980.7 [P].2018-06-19. (发明专利)
[7] 蔡力勋,彭云强,陈辉,刘晓坤. 小冲杆试验获取材料单轴应力-应变关系的方法: 中国, 201610606265.5 [P].2018-10-30. (发明专利)
八、其他
[1] 蔡力勋, 包陈, 陈辉, 董莉, 李荣锋, 刘晓坤,等. 金属材料 压入试验 强度、硬度和应力-应变曲线的测定[S].国家标准 GB 37782—2019.
[2] 蔡力勋, 陈辉, 包陈. 10000个科学难题•制造科学卷—“典型构元的力-变形弹塑性解析关系和测试方法”[M]. 科学出版社, 2018. pp. 1203-1205.