报告承办单位: 数学与统计学院
报告题目: 时滞微分方程传染病模型论证传染力的新视角
报告人姓名: Zou Xingfu(邹幸福)
报告人所在单位: 加拿大西安大略大学
报告人职称: 教授、博士生导师
报告时间: 2023年11月2日 星期四 下午4:00-6:00
报告地点: 理科楼A419
报告人简介:邹幸福教授分别在中山大学,湖南大学和加拿大约克大学获得学士,硕士和博士学位,并在加拿大维多利亚大学和美国乔治亚理工学院从事过博士后研究工作。曾任教于加拿大纽芬兰纪念大学,现为加拿大西安大略大学数学系教授。研究兴趣为微分方程和动力系统的理论及应用,特别是反应扩散方程、常泛函微分方程及偏泛函微分方程及其在生物领域的应用。
报告摘要:In this talk, we will revisit the notion of infection force from a new angle which can offer a new perspective to motivate and justify some infection force functions. Our approach not only can explain many existing infection force functions in the literature, it can also motivate new forms of infection force functions, particularly infection forces depending on disease surveillance of the past. As a demonstration, we propose an SIRS model with delay. We comprehensively investigate the disease dynamics represented by this model, particularly focusing on the local bifurcation caused by the delay and another parameter that reflects the weight of the past epidemics in the infection force. We confirm Hopf bifurcations both theoretically and numerically. The results show that depending on how recent the disease surveillance data are, their assigned weight may have a different impact on disease control measures.